Design of biquad universal filters using BD-DDCC
Chandan kumar choubey¹, Nachiket Raju Hedaoo², and Sneha balu Shedge³
¹,²,³ Dr.D.Y.Patil School Of Engineering,Department Of E&Tr,Charholi,Pune
¹ Chandan.ism@rediffmail.com, ²nachiket.22feb@gmail.com, ³snehashedge5@gmail.com

Abstract: Enhancing the performance of analog circuits with sub-volt supplies becomes a great challenge for designers. This paper presents an ultra-low voltage CMOS topology for DDCC based on the Bulk Driven (BD) principle to design a universal bi-quadratic filter performing five simultaneous standard functions: All pass, band pass, low pass, band reject & high pass. The proposed circuit employs 2 BD-DDCC and minimum grounded passive elements. The performance of the proposed circuit is confirmed from PSPICE simulation results using the TSMC 0.18um CMOS technology to prove the functionality.

Keywords - DDCC, filter, bulk driven (BD), CMOS.

I. INTRODUCTION
In modern electronics, designs use low power analog signal processing and low voltage supply[1]-[3] to reduce the cost, size and weight of portable devices. Over the last few years, many techniques have been introduced in analog electronics literature Some of these techniques are quasi-floating-gate (QFG) bulk-driven (BD), floating-gate (FG), and other structures[3-7]. The BD principle was first presented in 1987[10]. Based on this principle, many interesting LV active building blocks were designed. In recent years, BD technique has attracted strong interest from researchers. In this paper, a new bulk driven based DDCC is proposed to obtain flexibility in analog IC design. The proposed Bulk driven based DDCC is used in a biquad in order to show the versatility of this block. The BD-DDCC circuit and biquad are simulated with SPICE simulation software by using 0.18 um technology parameters. Simulation results show that the proposed circuit building block can be used to design filters with linearly tunable characteristics.

II DDCC
The differential difference current conveyor (DDCC) was introduced in 1996 [8]. It combines the good features of a differential difference amplifier (DDA), like low output impedance, high input impedance, low number of components, and capability of performing arithmetic operations, and the advantages of a current conveyor (CCII), such as bandwidth, accuracy and high gain[8]. Therefore, the DDCC has been utilized in many interesting applications [11, 12, 13, 16-18].

The symbol of the DDCC is shown in fig.1

Fig:1 Equivalent circuit Diagram

The DDCC has 3 voltage terminals namely \(V_{y1}, V_{y2} \) and \(V_{y3} \) which acts as a high input impedance and X terminal is low output current impedance terminal. Thus if realization connected between output terminal X and any input terminal Y, it will be acts as a low output impedance and high-input impedance.

The characteristics of DDCC is described in matrix relation is shown below:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

The circuit structure of the active block as introduced. The bulk driven based DDCC is shown in Fig 2

- Transistors M7, M8, M9, M10 and M13act as a current mirror in which applying the constant current source \(I_{bias} = 5\mu A \).
- It consists of 2 Bulk Driven differential input stages M3, M4 and M1, M2.
- Transistors M7 and M8 are common for both Bulk driven differential input stages.
Fig:2 CMOS realization of DDCC

- M11, M11c and M9, M9c acts as a cascode transistors.
- Transistors M5 and M6 act as tail current Sources.

III PROPOSED CIRCUIT

The proposed biquad circuit configuration is shown in fig. It consists of 2 DDCC's and 4 passive elements (2 capacitors and 2 resistors).

Fig:3 proposed biquad filter

The following transfer function:

$$\frac{V_{out}}{V_{in}} = \frac{S^4 C_1 C_2}{S^4 (C_1 C_2) + S^2 \left(\frac{C_2}{R_1}\right) + \frac{1}{R_1 R_2}} \frac{V_{in1}}{V_{in2}} + \frac{C_2}{R_1 R_2}$$

Its is clearly seen from above equations:

- The all pass response can be obtained when Vin1 = Vin2 = 0 (grounded) and Vin3 = 1 and Vout is output.
- The band reject response can be obtained when Vin1 = Vin2 = 1 and Vin3 = 0 (grounded) and Vout is output.
- The high pass response can be obtained when Vin1 = Vin3 = 0 (grounded) and Vin2 = 1 and Vout is output.
- The low pass response can be obtained when Vin1 = Vin3 = 0 (grounded) and Vin2 = 1 and Vout is output.

IV SIMULATION AND RESULTS

The proposed bd-ddcc was simulated by using SPICE model 0.18 μm TSMC CMOS technology parameter. The technology is used for the NMOS and the PMOS transistors. The aspect ratios of the MOS transistors, occurred in the bd-ddcc implementation, are illustrated in Table I.

The supply voltage $V_{DD} = 0.3V$, $V_{SS} = -0.3V$ and $I_{BIAS} = 5μA$. The value of the capacitances $C_1 = 2nF$ and $C_2 = 2nF$ and resistances $R_1 = R_2 = 10KΩ$. The values are designed to obtain AP, BP, LP, BR and HP filters. For the proposed BDDDC circuit output displays the port relationships of ports with respect to V_X.

The DC curves V_X versus V_{Y1} is shown in fig 4. In this response V_{Y2} and V_{Y3} are connected to ground and V_{Y1} varies from -350mV to 350mV. The output X also varies the input V_{Y1} but at certain voltage (250 mV) it can diverged. The DC curves V_X versus V_{Y2} is shown in fig 6. In this response input varies from -350 to 350mV same as the V_{X1}. The frequency responses of the voltage gains V_{X}/V_{Y1} and V_{X}/V_{Y2} is shown in fig 5. The current gain and low frequency voltage are equal to 1 and their -3dB bandwidth is 42MHz. The DC curve I_X versus I_Z is shown in fig 7. The current gain and low frequency voltage are equal to 1 and their -3dB bandwidth is 596KHz.

<table>
<thead>
<tr>
<th>Transistor</th>
<th>$W(µm)$</th>
<th>$L(µm)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1,M2,M3,M4</td>
<td>100</td>
<td>0.3</td>
</tr>
<tr>
<td>M5,M6</td>
<td>50</td>
<td>0.3</td>
</tr>
<tr>
<td>M7,M8,M13</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>M9,M10</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>M11,M12</td>
<td>100</td>
<td>0.3</td>
</tr>
<tr>
<td>M9C,M10C</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>M11C,M12C</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE1: Transistors aspect ratios and component values

www.i3cpublications.org
The simulated results for the AP, LP, BP, BR and HP filters characteristics are shown below fig.9. The frequency at which all these filters are worked properly is 10 kHz which is shown in fig 9. The frequency response of phase and gain of all pass filter is shown in fig10. The input and output response of band pass filter for 1KHz is shown in fig.11.

Fig.4 Input voltage V_{Y1} versus V_x

Fig5: Frequency responses of voltage gains $V_X/V_{Y1}, V_X/V_{Y2}$

Fig.6 Input voltage V_{Y1} versus V_x

Fig.7 DC curve I_X versus I_Z

Fig.8. frequency response of current gain I_Z/I_X

Fig.9 Frequency response of AP, LP, BP, BR and H Pin db

Fig 10. Phase and Gain response of AP filter
In this paper, a new approach called differential difference current conveyor for realizing filters applications has been presented. Simulation results done by PSPICE confirm the validity of the theory and demonstrate the use of the DDCC.

REFERENCES

[20] Montrie KUNGNERN 1, Fabian KHATEB 2, Kobchai DEJHAN 1, Patarapong PHASUKKIT 1, Supan TUNGJITKUSOLMUN 1, Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors