Minimality and Maximalitity of Ordered Quasi-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings

V. Syam Julius Rajendra1, Dr. D. Madhusudhana Rao2 and M. Sajani Lavanya3

1Lecturer, Department of Mathematics, A.C. College, Guntur, A.P. India
Email: juliusvennam@gmail.com

2Department of Mathematics, V. S. R & N.V.R. College, Tenali, A.P. India
Email: dmrmaths@gmail.com, dmr04080@gmail.com

3Department of Mathematics, A.C. College, Guntur, A.P. India
Email: cyrilavanya@gmail.com

Abstract — Our aim in this paper is to develop a body of results on the minimality and maximality of ordered quasi-Γ-ideals in ordered ternary Γ-semirings, that can be used like the more classical results on unordered structures.

Index Terms — ordered ternary Γ-semiring, ordered quasi-Γ-ideal, minimality and maximality.

I. INTRODUCTION

The literature of ternary algebraic system was introduced by Lehmer [18] in 1932. He investigated certain ternary algebraic systems called triplexes which turn out to be ternary groups. The notion of ternary semigroups was known to Banach. He showed by an example that a ternary semigroup does not necessarily reduce to an ordinary semigroup. We can see that any semigroup can be reduced to a ternary semigroup. The study of ordered ternary semigroups began about 2000 by several authors, for example, Lampan [15], Chinram [8], and Akram and Yaqoob [1]. The theory of different types of ideals in (ordered) semigroups and in (ordered) ternary semigroups was studied by several researches such as: In 1965, Sioson [25] studied ideal theory in ternary semigroups. He also introduced the notion of regular ternary semigroups and characterized them by using the notion of quasi-ideals. In 1995, Dixit and Dewan [11] studied the properties of quasi-ideals and bi-ideals in ternary semigroups. In 1998, the concept and notion of ordered quasi-ideals in ordered semigroups was introduced by Kehayopulu [17]. In 2000, Cao and Xu [4] characterized minimal and maximal left ideals in ordered semigroups, and gave some characterizations of minimal and maximal left ideals in ordered semigroups. In 2002, Arslanov and Kehayopulu [2] gave some characterizations of minimal and maximal ideals in ordered semigroups. In 2004, Lampan and Siripitukdet [16] characterized (0-)minimal and maximal ordered left ideals in ordered Γ-semigroups, and gave some characterizations of (0-)minimal and maximal ordered left ideals in ordered Γ-semigroups. In 2007, Lampan [13] characterized (0-)minimal and maximal lateral ideals in ternary semigroups. In 2008, Lampan [14] characterized (0-)minimal and maximal ordered quasi-ideals in ordered semigroups, and gave some characterizations of (0-)minimal and maximal ordered quasi-ideals in ordered semigroups.

Before going to prove the main results we need the following definitions that we use later.
Definition I.1 [27]: Let T and Γ be two additive commutative semigroups. T is said to be a ternary Γ-semiring if there exist a mapping from $T \times T \times T \times T \times T \times T$ to T which maps $(x, y, z, a, b, c) \rightarrow [x, a, x, b, c]_\Gamma$ satisfying the conditions:

i) $[(a+b)c]d = [ac + bc]d = [a+bc]d = [ab + cd] = [abc]d$

ii) $[(a+b)c]d = [ac + bc]d = [a+bc]d$

iii) $[(a+b)c]d = [abc]d = [abcd]$ for all $a, b, c, d \in T$ and $a, b, c, d \in \Gamma$. Then T is a ternary semiring.

Note I.2 [27]: Let $(T, \Gamma, +, \cdot)$ be a ternary Γ-semiring. For nonempty subsets A_1, A_2 and A_3 of T, let $[A_1 \Gamma A_2 \Gamma A_3] = \{a \in A_1 \cdot \beta \in A_2 \cdot a \cdot \beta \in A_3 \cdot \beta \in \Gamma \}$. For any $t \in T$, let $[t \Gamma A_1 \Gamma A_2] = \{t \cdot \beta \in A_1 \cdot \beta \in A_2 \cdot \beta \in \Gamma \}$. The other cases can be defined analogously.

Note I.3 [27]: Let T be a ternary semiring. If A, B are two subsets of T, we shall denote the set $A + B = \{a + b : a \in A, b \in B\}$ and $2A = \{a + a : a \in A\}$.

Definition I.4 [27]: A ternary Γ-semiring T is called an ordered ternary Γ-semiring if there is a partial order \leq on T such that $x < y$ implies that (i) $a + c \leq b + c$ and $a + c < b + c$ (ii) $[a + b + c + d] < [a + b + c + d]$. For all $a, b, c, d \in T$ and $a, b, c, d \in \Gamma$.

Note I.5 [27]: For the convenience we write x, a, x, b, x instead of $[x, a, x, b, x]$.

Notation I.6 [27]: Let T be PO-ternary Γ-semiring and S be a nonempty subset of T. If H is a nonempty subset of S, we denote $\{s \in S : s \leq h \}$ for some $h \in H$ by $[H]_S$.

Notation I.7 [27]: Let T be PO-ternary Γ-semiring and S be a nonempty subset of T. If H is a nonempty subset of S, we denote $\{s \in S : h \leq s \}$ for some $h \in H$ by $[H]_S$.

Notation I.8 [27]: $[H]_r$ and $[H]_r$ are simply denoted by $[H]$ and $[H]$ respectively.

Definition I.9 [27]: Let T be PO-ternary Γ-semiring. A nonempty subset S is said to be a PO-ternary Γ-sub semi ring of T if

i) S is an additive semi group of T,

ii) $a \in S \subseteq S$ for all $a, b, c, d \in S$, $a, b, c, d \in \Gamma$.

iii) $T \subseteq S$, $a, c \leq S$, $a, c \leq \Gamma$.

Note I.10 [27]: A nonempty subset S of a po-ternary Γ-semiring T is a po-ternary Γ-sub semi ring of T if and only if $S \subseteq S$, $S \subseteq S$, $S \subseteq S$, $S \subseteq S$.

Definition I.12: An element z of an ordered ternary Γ-semiring T is said to be a zero element if (1) $z + z = z$ and (2) $z = z$ for all $x, y, z \in T$, $a, b, c \in \Gamma$ and if $z \in T$ is a zero element, it is denoted by 0.

Definition I.13 [27]: A nonempty subset A of a po-ternary Γ-semiring T is said to be left PO-ternary Γ-ideal of T if

1) $a, b \in A$ implies $a + b \in A$.

2) $a, c \in T$, $a, b \in A$, $a, b \in \Gamma$ implies $bca \in A$.

3) $t \in T$, $a \in A$, $t \leq a \Rightarrow a \in A$.

Note I.14 [27]: A nonempty subset A of a po-ternary Γ-semiring T is a left PO-ternary Γ-ideal if and only if A is additive subsemigroup of T, $A \subseteq A$ and $[A] \subseteq A$.

Definition I.15 [27]: A nonempty subset A of a po-ternary Γ-semiring T is said to be a lateral PO-ternary Γ-ideal of T if

1) $a, b \in A$ implies $a + b \in A$.

2) $a, b \in T$, $a, b \in A$, $a, b \in \Gamma$ implies $bca \in A$.

3) $t \in T$, $a \in A$, $t \leq a \Rightarrow a \in A$.

Note I.16 [27]: A nonempty subset A of a PO-ternary Γ-semiring T is a lateral PO-ternary Γ-ideal of T if and only if A is additive sub semi group of T, $A \subseteq A$ and $[A] \subseteq A$.

Definition I.17 [27]: A nonempty subset A of a PO-ternary Γ-semiring T is a right PO-ternary Γ-ideal of T if

1) $a, b \in A$ implies $a + b \in A$.

2) $a, b \in T$, $a, b \in A$, $a, b \in \Gamma$ implies $bca \in A$.

3) $t \in T$, $a \in A$, $t \leq a \Rightarrow a \in A$.

Note I.18 [27]: A nonempty subset A of a PO-ternary Γ-semiring T is a right PO-ternary Γ-ideal of T if and only if A is additive sub semi group of T, $A \subseteq A$ and $[A] \subseteq A$.

Definition I.19 [27]: A nonempty subset A of a PO-ternary Γ-semiring T is a two sided PO-ternary Γ-ideal of T if

1) $a, b \in A$ implies $a + b \in A$.

2) $a, b \in T$, $a, b \in A$, $a, b \in \Gamma$ implies $bca \in A$.

3) $t \in T$, $a \in A$, $t \leq a \Rightarrow a \in A$.

Note I.20 [27]: A nonempty subset A of a PO-ternary Γ-semiring T is a two sided PO-ternary Γ-ideal of T if and only if it is both a left PO-ternary Γ-ideal and a right PO-ternary Γ-ideal of T.

Definition I.21 [27]: A nonempty subset A of a PO-ternary Γ-semiring T is said to be PO-ternary Γ-ideal of T if

1) $a, b \in A$ implies $a + b \in A$.

2) $a, b \in T$, $a, b \in A$, $a, b \in \Gamma$ implies $bca \in A$.

3) $t \in T$, $a \in A$, $t \leq a \Rightarrow a \in A$.

Note I.22 [27]: A nonempty subset A of a PO-ternary Γ-semiring T is an PO-ternary Γ-ideal if and only if it is left PO-ternary Γ-ideal, lateral PO-ternary Γ-ideal and right PO-ternary Γ-ideal of T.

II. ORDERED QUASI-TERNARY Γ-IDEALS AND ORDERED BINARY Γ-IDEALS
Definition II.1: An additive sub semi group Q of an ordered ternary $Γ$-semiring T is said to be an ordered quasi-Ternary $Γ$-ideal of T if

1. $[TQT]∩[TQT]∩[QT] ⊆ Q$,
2. $[TQT]∩[TQT]∩[QT] ⊆ Q$, and
3. $[Q] ⊆ Q$.

Note II.2: We can easily prove that \emptyset is the smallest ordered quasi-Ternary $Γ$-ideal of an ordered ternary $Γ$-semiring T with a zero element and it is called a zero ordered quasi-Ternary $Γ$-ideal of T. Moreover, $0 ∈ Q$ for all ordered quasi-Ternary $Γ$-ideal Q of T.

Definition II.3: An ordered ternary $Γ$-sub semi ring B of an ordered ternary $Γ$-semiring T is said to be an ordered bi-Ternary $Γ$-ideal of T if

1. $BITBTBITB ⊆ B$, and
2. $[B] ⊆ B$.

Lemma II.4: Let T be an ordered ternary $Γ$-semi ring. Then the following statements hold.

1. Every ordered left, ordered lateral and ordered right ternary $Γ$-ideal of T is an ordered quasi-Ternary $Γ$-ideal of T.
2. The intersection of an ordered left, an ordered lateral and an ordered right $Γ$-ideal of T is an ordered quasi-Ternary $Γ$-ideal of T.
3. Every ordered quasi-Ternary $Γ$-ideal of T is an ordered bi-Ternary $Γ$-ideal of T.

Proof: (1) Let L, R, and M be an ordered left, an ordered right and an ordered lateral Ternary $Γ$-ideal of T, respectively. (1) We see that $[L] = L, [R] = R$ and $[M] = M$.

Thus $[TTL]∩[TTL]∩[TTL] ⊆ [L] = L,$

$[TTT]∪[TTT]∪[TTT] ⊆ [R] = R$, and

$[TTTM]∩[TTTM]∩[TTTM] ⊆ [M] = M$.

Hence, L, R, and M are ordered quasi-Ternary $Γ$-ideals of T.

(2) Suppose that $Q = L ∩ M ∩ R$ and let $l ∈ L, m ∈ M$ and $r ∈ R, α, β ∈ Γ$.

Then $ramβl ∈ RML ⊆ [TTL]∩[TTL]∩[TTL] ⊆ [L] = L,$

$[TT]∪[TT]∪[TT] ⊆ [R] = R$, and

$[TTTM]∩[TTTM]∩[TTTM] ⊆ [M] = M$.

Hence, Q is an ordered quasi-Ternary $Γ$-ideal of T.

(3) Let B be an ordered quasi-Ternary $Γ$-ideal of T. Then $BBBTBB ⊆ [TTL]∩[TTL]∩[TTL]$.

We have $BBBTBB ⊆ [TTT]∩[TTL]∩[TTL]$.

Then B is an ordered quasi-Ternary $Γ$-ideal of T. Hence, B is an ordered quasi-Ternary $Γ$-ideal of T.

Theorem II.5: Let A be a nonempty subset of an ordered ternary $Γ$-semiring T. Then the following statements hold.

1. $[TTT]$, $[ATT]$ and $[TTA]∩[TTA]∩[TTA]$ are an ordered left, an ordered right and an ordered lateral Ternary $Γ$-ideals of T, respectively.

(2) $[TTA], [ATT] ∪ [A]$ and $[TAT]$ are an ordered left, an ordered right and an ordered lateral Ternary $Γ$-ideals of T containing A, respectively.

Proof: (1) Suppose that $s, t ∈ [TTT]$. Then there exist $x, y, z, a, b, c, d ∈ T, c, d ∈ A$ such that $s = x, y, z, a, b, c, d ∈ T$ and $s + t = x, y, z, a, b, c, d ∈ T$. Since T is a PO-ternary $Γ$-semiring and $[TTT]$ is a left PO-ternary $Γ$-ideal of T.

We have $s + t = x, y, z, a, b, c, d ∈ T$ and hence $s + t ∈ [TTT]$. Similarly we can show that $s + t ∈ [TTT]$. Therefore $[TTT]$ is additive sub semi groups of T.

Since $A ≠ \emptyset$, we have $[TTTA] ≠ \emptyset, [ATT] ≠ \emptyset$ and $[TTA] ≠ \emptyset$.

We see that $[TTT] = ([TTT]∪[ATT])∪[TTA]$. Thus $T = [TTT]∪[ATT]$.

Hence, $[TTTA] = [ATT]∪[TTA]$, and $[TTTA] = [ATT]∪[TTA]$.

Theorem II.6: If Q is an ordered quasi-$Γ$-ideal of an ordered ternary $Γ$-semiring T, then it is the intersection of an ordered left, an ordered right and an ordered lateral ternary $Γ$-ideals of T, respectively.

Proof: Assume that Q is an ordered quasi-Ternary $Γ$-ideal of T and let $L = [TTL]∪[TT]∪[TTT]$ and $R = [TTT]∪[TT]∪[TTT]$.

By Theorem II.2, we have L, R and M are an ordered left, an ordered right and an ordered lateral Ternary $Γ$-ideals of T containing Q, respectively. Thus $Q ⊆ L = \emptyset$.

Since Q is an ordered quasi-Ternary $Γ$-ideal of T, we have $L = \emptyset$.

Hence, $Q = L = \emptyset$.

Theorem II.7: Let T be an ordered ternary $Γ$-semiring. Then the intersection of arbitrary nonempty family of ordered quasi-Ternary $Γ$-ideals of T is either empty or an ordered quasi-Ternary $Γ$-ideal of T.

Proof: Let $\{Q_i \mid i \in I\}$ be a nonempty family of ordered quasi-$Γ$-ideals of T and let $Q = \bigcap_{i \in I} Q_i ≠ \emptyset$. We claim that Q is an ordered quasi-Ternary $Γ$-ideal of T. Since Q_i is an ordered quasi-Ternary $Γ$-ideal of T for all $i \in I$, we have
(TTTTQ)∩(TTQΓTTTQTqTTT)∩(QTTTT)
≤ (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT)
≤ Q, for all i ∈ I.
Thus (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT)
≤ \bigcap_{i=1}^{n} Q = Q and

\[Q = \bigcap_{i=1}^{n} Q_i \leq \bigcap_{i=1}^{n} Q = Q. \]

Hence, Q is an ordered quasi-Ternary Γ-ideal of T.

Definition II.8: Let A be an additive sub semi group of an ordered ternary Γ-semiring T. The intersection of all ordered quasi-ternary Γ-ideals of T containing A is called the **ordered quasi-Ternary Γ-ideal** of T generated by A and is denoted by Q(A). Moreover, Q(A) is the smallest ordered quasi-Ternary Γ-ideal of T containing A. If A = \{a\}, we also write Q(a) as Q(a).

Theorem II.9: Let A be an additive sub semi group of an ordered ternary Γ-semiring T. Then

\[Q(A) = \{A\} \cup (TTTTQ)\cap(TTQΓTTTQΓTTT)\cap(AQTTT) \]

In particular,

\[Q(a) = \{a\} \cup (TTTTQ)\cap(TTQΓTTTQΓTTT)\cap(aQTTT) \]

for all a ∈ T.

Proof: By Theorem II.5 (2), we have (AQTΓTTT) and (AQTΓTTT ∪ TTQΓTTT) are an ordered left, an ordered right and an ordered lateral ternary Γ-ideals of T containing A, respectively. By Lemma II.4 (2), we have (AQTΓTTT) ∩ (AQTΓTTT ∪ TTQΓTTT) is an ordered quasi-ternary Γ-ideal of T containing A. Thus \[Q(A) ∈ (AQTΓTTT) ∩ (AQTΓTTT ∪ TTQΓTTT) = (AQTΓTTT) \]

By the proof of Theorem II.6, we have

\[\cup (AQTΓTTT) ∩ (AQTΓTTT ∪ TTQΓTTT) = (AQTΓTTT) \]

Since T is 0-quasi-simple, we have Q(a) = T.

Note: We also define a **minimal ordered left**, a **minimal ordered lateral** and a **minimal ordered right ternary Γ-ideal** of an ordered ternary Γ-semiring without a zero element in the same way of a minimal ordered quasi-Γ-ideal.

III. MINIMALITY OF ORDERED QUASI-TERNARY Γ-IDEALS IN ORDERED TERNARY Γ-SEMIRINGS

In this section, we characterize the relationship between the minimality of ordered quasi-ternary Γ-ideals and a quasi-simple and a 0-quasi-simple ordered ternary Γ-semirings.

Definition III.1: Let T be an ordered ternary Γ-semiring without a zero element. Then T is said to be **quasi-simple** if T has no proper ordered quasi-ternary Γ-ideals.

Theorem III.2: Let T be an ordered ternary Γ-semiring without a zero element. Then the following statements are equivalent.

(1) T is quasi-simple.

(2) (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT) = T for all a ∈ T.

(3) Q(a) = T for all a ∈ T.

Proof: (1)⇒(2) Assume that T is quasi-simple and let a ∈ T. By Theorem II.5 (1), we have (TTTTQ)∩(aQTTT) and (TTQΓTTTQΓTTT) are an ordered left, an ordered right and an ordered lateral ternary Γ-ideals of T, respectively. By Lemma II.4 (2), we have (TTTTQ)∩(TTQΓTTTQΓTTT)∩(aQTTT) is an ordered quasi-Ternary Γ-ideal of T. Since T is quasi-simple, we have (TTTTQ)∩(TTQΓTTTQΓTTT)∩(aQTTT) = T.

(2)⇒(3) Assume that (TTTTQ)∩(TTQΓTTTQΓTTT)∩(aQTTT) = T for all a ∈ T. Let a ∈ T. Then (TTTTQ)∩(TTQΓTTTQΓTTT)∩(aQTTT) = T. By Theorem II.9, we get

\[T = (TTTTQ)∩(TTQΓTTTQΓTTT)∩(aQTTT) \]

Hence, T = Q(a).

Note: We also define a **minimal ordered left**, a **minimal ordered lateral** and a **minimal ordered right ternary Γ-ideal** of an ordered ternary Γ-semiring without a zero element in the same way of a minimal ordered quasi-Γ-ideal.

Theorem III.7: Let Q be an ordered quasi-ternary Γ-ideal of an ordered ternary Γ-semiring T without a zero element. Then Q is a minimal ordered quasi-ternary Γ-ideal of T if and only if it is the intersection of a minimal ordered left, a minimal ordered right and a minimal ordered lateral ternary Γ-ideal of T.

Proof: Assume that Q is a minimal ordered quasi-ternary Γ-ideal of T. Then (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT) ⊆ Q. By Theorem II.5 (1), (TTTTQ) and (QTTTT) are an ordered left, an ordered right and an ordered lateral ternary Γ-ideal of T, respectively. By Lemma II.4 (2), (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT) is an ordered quasi-ternary Γ-ideal of T. Since Q is a minimal ordered quasi-ternary Γ-ideal of T, we have (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT) = Q. We claim that (TTTTQ) is a minimal ordered left ternary Γ-ideal of T. Let L be an ordered left ternary Γ-ideal of T such that L ⊆ (TTTTQ). Then (TTTTQ) ⊆ (L) = L ⊆ (TTTTQ).

Thus (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT) \[\subseteq (TTTTQ)∩(TTQΓTTTQΓTTT)∩(QTTTT) = Q. \]
Since $\langle \{\{T\}TT|\{TT\}TQ\}TT\{TT\}T\rangle \cap \{\{Q\}T\}TTT$ is an ordered quasi-Ternary Γ-ideal of L and M is a minimal ordered quasi-Ternary Γ-ideal of T, we have $\langle \{\{T\}TT|\{TT\}TQ\}TT\{TT\}T\rangle \cap \{\{Q\}T\}TTT = Q$. Thus $Q \subseteq \langle \{\{T\}TT|\{TT\}TQ\}TT\{TT\}T\rangle \subseteq \{\{TT\}T\}TTT \subseteq L$. Hence, $L = \{\{TT\}T\}TTT$. Therefore, $\{\{TT\}T\}TTT$ is a minimal ordered left Ternary Γ-ideal of T. A similar proof holds for the other two cases, $\{\{TT\}T\}TTT$ and $\{\{TT\}TQ\}TT\{TT\}T$ are minimal ordered right and minimal ordered lateral Ternary Γ-ideal of T, respectively.

Conversely, let $Q = L \cap M \cap R$ where L, R and M are a minimal ordered left, a minimal ordered right and a minimal ordered lateral Ternary Γ-ideal of T, respectively. By Lemma II.4 (2), we have Q is an ordered quasi-Ternary Γ-ideal of T. Let A be an ordered quasi-Ternary Γ-ideal of T such that $A \subseteq Q$. By Theorem 2.5 (1), we have $\{\{TT\}T\}TTQ \subseteq \{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq L$. Hence, $L = \{\{TT\}T\}TTT$. Similarly, $\{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq M$. Since A is an ordered quasi-Ternary Γ-ideal of T, we have $Q = \langle \{\{TT\}T\}TTT \rangle \cap \{\{TT\}T\}TTT \subseteq A$. This implies that $A = Q$. Hence, Q is a minimal ordered quasi-Ternary Γ-ideal of T.

Definition III.8: A nonzero ordered quasi-Ternary Γ-ideal Q of an ordered ternary Γ-semiring T with a zero element is said to be a **0-minimal ordered quasi-Ternary Γ-ideal** of T if there is no a nonzero ordered quasi-Ternary Γ-ideal A of T such that $A \subseteq Q$. Equivalently, if for any nonzero ordered quasi-Ternary Γ-ideal A of T such that $A \subseteq Q$, we have $A = Q$.

Note III.9: We also define a 0-minimal ordered left, a 0-minimal ordered right and a 0-minimal ordered lateral Ternary Γ-ideal of T is either $\{0\}$ or a 0-minimal ordered quasi-Ternary Γ-ideal of T.

Theorem III.10: Let T be an ordered ternary Γ-semiring with a zero element. Then the intersection of a 0-minimal ordered left, a 0-minimal ordered right and a 0-minimal ordered lateral Ternary Γ-ideal of T is either $\{0\}$ or a 0-minimal ordered quasi-Ternary Γ-ideal of T.

Proof: Let $Q = L \cap M \cap R \neq \{0\}$ where L, R and M are a 0-minimal ordered left, a 0-minimal ordered right and a 0-minimal ordered lateral Ternary Γ-ideal of T, respectively. By Lemma II.4 (2), we have Q is an ordered quasi-Ternary Γ-ideal of T. Let A be a nonzero ordered quasi-Ternary Γ-ideal of T such that $A \subseteq Q$. By Theorem II.5 (1), we have $\{\{TT\}T\}TTQ \subseteq \{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq L$. Hence, $L = \{\{TT\}T\}TTT$. Similarly, $\{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq M$. Since A is an ordered quasi-Ternary Γ-ideal of T, we have $Q = \{\{TT\}T\}TTT \subseteq A$. This implies that $A = Q$. Hence, Q is a 0-minimal ordered quasi-Ternary Γ-ideal of T.

Theorem III.11: Let Q be an ordered quasi-Ternary Γ-ideal of an ordered ternary Γ-semiring T without a zero element. If Q is quasi-simple, then Q is a 0-minimal ordered quasi-Ternary Γ-ideal of T.

Proof: Assume that Q is quasi-simple and let A be an ordered quasi-Ternary Γ-ideal of T such that $A \subseteq Q$. Now,

$$\{\{TT\}T\}TTQ \subseteq \{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq M.$$

This implies that $A = Q$. Hence, Q is a 0-minimal ordered quasi-Ternary Γ-ideal of T.

Theorem III.12: Let Q be a nonzero ordered quasi-Ternary Γ-ideal of an ordered ternary Γ-semiring T with a zero element. If Q is quasi-simple, then Q is a 0-minimal ordered quasi-Ternary Γ-ideal of T.

Proof: Assume that Q is 0-quasi-simple and let A be a nonzero ordered quasi ternary Γ-ideal of T such that $A \subseteq Q$. Now,

$$\{\{TT\}T\}TTQ \subseteq \{\{TT\}T\}TTT \subseteq \{\{TT\}T\}TTT \subseteq M.$$

Thus A is a 0-minimal ordered quasi-Ternary Γ-ideal of Q. Since Q is 0-quasi-simple, we have $A = Q$. Hence, Q is a 0-minimal ordered quasi-Ternary Γ-ideal of T.

Theorem III.13: Let T be an ordered ternary Γ-semiring without a zero element having proper ordered quasi-Ternary Γ-ideals. Then every proper ordered quasi-Ternary Γ-ideal of T is minimal if and only if the intersection of any two distinct proper ordered quasi-Ternary Γ-ideals is empty.

Proof: Let Q_1 and Q_2 be two distinct proper ordered quasi-Ternary Γ-ideals of T. By assumption, we have that $Q_1 \cap Q_2$ is minimal. If $Q_1 \cap Q_2 \neq \emptyset$, then by Theorem II.7, $Q_1 \cap Q_2$ is an ordered quasi-Ternary Γ-ideal of T. Since $Q_1 \cap Q_2 \subseteq Q_1$ and Q_2 is minimal, we have $Q_1 \cap Q_2 = Q_1$. Since $Q_1 \cap Q_2 \subseteq Q_2$ and Q_2 is minimal, we have $Q_2 = Q_1 \cap Q_2 = Q_2$. That is a contradiction. Hence, $Q_1 \cap Q_2 = \emptyset$.

Conversely, let Q be a proper ordered quasi-Ternary Γ-ideal of T and let A be an ordered quasi-Ternary Γ-ideal of T such that $A \subseteq Q$. Then A is a proper ordered quasi ternary Γ-ideal of T. If $A \neq Q$, then by assumption, $A = A \cap Q = \emptyset$. That is a
contradiction. Hence, \(A = Q \). Therefore, \(Q \) is a minimal ordered quasi-ternary \(\Gamma \)-ideal of \(T \).

Theorem III.14: Let \(T \) be an ordered ternary \(\Gamma \)-semiring with a zero element having nonzero proper ordered quasi-ternary \(\Gamma \)-ideals. Then every nonzero proper ordered quasi-ternary \(\Gamma \)-ideal of \(T \) is 0-minimal if and only if the intersection of any two distinct nonzero proper ordered quasi-ternary \(\Gamma \)-ideals is \(\{0\} \).

Proof: Let \(Q_1 \) and \(Q_2 \) be two distinct proper ordered quasi-ternary \(\Gamma \)-ideals of \(T \). By assumption, we have that \(Q_1 \cap Q_2 \) is a minimal ideal of \(T \). Since \(Q_1 \cap Q_2 \) is a minimal ideal of \(T \), we have \(Q_1 \cap Q_2 = \{0\} \). Since \(Q_1 \cap Q_2 \neq \{0\} \), we have \(Q_1 \cap Q_2 = Q_2 \). That is a contradiction. Hence, \(Q_1 \cap Q_2 = \{0\} \).

Conversely, let \(Q \) be a proper ordered quasi-ternary \(\Gamma \)-ideal of \(T \) and let \(A \) be a nonzero ordered quasi-ternary \(\Gamma \)-ideal of \(T \) such that \(A \subseteq Q \). Then \(A \) is a proper ordered quasi-ternary \(\Gamma \)-ideal of \(T \). If \(A \neq \{0\} \), then by assumption, \(A = A \cap Q = \{0\} \). That is a contradiction. Hence, \(A = Q \). Therefore, \(Q \) is a 0-minimal ordered quasi-ternary \(\Gamma \)-ideal of \(T \).

IV. Maximality of Ordered Quasi-Ternary \(\Gamma \)-Ideals in Ordered Ternary \(\Gamma \)-Semirings

In this section, we characterize the relationship between the maximality of ordered quasi-ternary \(\Gamma \)-ideals and the union \(\bigcup \) of all proper ordered quasi-ternary \(\Gamma \)-ideals in ordered ternary \(\Gamma \)-semiring without a zero element and the union \(\bigcup \) of all nonzero proper ordered quasi-ternary \(\Gamma \)-ideals in ordered ternary \(\Gamma \)-semirings with a zero element.

Definition IV.1: A proper ordered quasi-ternary \(\Gamma \)-ideal \(Q \) of an ordered ternary \(\Gamma \)-semiring \(T \) is said to be a maximal ordered quasi-ternary \(\Gamma \)-ideal of \(T \) if there is no proper ordered quasi-ternary \(\Gamma \)-ideal of \(T \) such that \(Q \subseteq A \). Equivalently, if for any proper ordered quasi-ternary \(\Gamma \)-ideal \(A \) of \(T \) such that \(Q \subseteq A \), we have \(A = Q \). Equivalently, if for any ordered quasi-ternary \(\Gamma \)-ideal \(A \) of \(T \) such that \(Q \subseteq A \), we have \(A = T \).

Theorem IV.2: Let \(Q \) be a proper ordered quasi-ternary \(\Gamma \)-ideal of an ordered ternary \(\Gamma \)-semiring \(T \). If either

1. \(T \setminus Q = \{a\} \) for some \(a \in T \) or
2. \(T \setminus Q \subseteq \{bTT\} \) \(\cup \{TT\} \) \(\cup \{bbTT\} \) \(\cup \{bTT\} \) for all \(b \in T \setminus Q \),

then \(Q \) is a maximal ordered quasi-ternary \(\Gamma \)-ideal of \(T \).

Proof: Let \(A \) be an ordered quasi-ternary \(\Gamma \)-ideal of \(T \) such that \(Q \subseteq A \).

Case 1: \(T \setminus Q = \{a\} \) for some \(a \in T \). Since \(Q \subseteq A \), we have \(A \setminus Q \subseteq T \setminus Q = \{a\} \). Therefore, \(A \setminus Q = \{a\} \).

Case 2: \(T \setminus Q \subseteq \{TTTT\} \cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \) for all \(b \in T \setminus Q \). Let \(b \in A \setminus Q \subseteq T \setminus Q \) because \(A \setminus Q \neq \emptyset \).

Thus \(T \setminus Q \subseteq \{TTTT\} \cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \) \(\subseteq \{TTTT\} \cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \subseteq A \).

Hence, \(T = QU(T \setminus Q) \subseteq QUA = A \). This implies that \(A = T \). Therefore, \(Q \) is a maximal ordered quasi-ternary \(\Gamma \)-ideal of \(T \).

Theorem IV.3: If \(Q \) is a maximal ordered quasi-ternary \(\Gamma \)-ideal of an ordered ternary \(\Gamma \)-semiring \(T \) and \(QU(a) \) is an ordered quasi-ternary \(\Gamma \)-ideal of \(T \) for all \(a \in T \setminus Q \), then either

1. \(T \setminus Q \subseteq \{a\} \) and \(a \neq \emptyset \) \(\cup \{TTTT\} \cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \subseteq Q \) for all \(b \in T \setminus Q \) or
2. \(T \setminus Q \subseteq QU(a) \) for all \(a \in T \setminus Q \).

Proof: Assume that \(Q \) is a maximal ordered quasi-ternary \(\Gamma \)-ideal of an ordered ternary \(\Gamma \)-semiring \(T \) and \(QU(a) \) is an ordered quasi-ternary \(\Gamma \)-ideal of \(T \) for all \(a \in T \setminus Q \). Then we consider the following two cases:

Case 1: \(\{TTTT\} \) \(\cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \subseteq Q \) for some \(a \in T \setminus Q \).

Thus \(QU(a) = Q \) is an ordered quasi-ternary \(\Gamma \)-ideal of \(T \). Since \(a \in T \setminus Q \), we have \(Q \subseteq QU(a) \). Since \(Q \) is a maximal ordered quasi-ternary \(\Gamma \)-ideal of \(T \), we have \(QU(a) = T \). Thus \(T \setminus Q \subseteq \{a\} \). Next, we let \(b \in T \setminus Q \). Then \(b \leq a \). Thus \(\{TTTT\} \cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \subseteq \{TTTT\} \cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \subseteq Q \).

Case 2: \(\{TTTT\} \) \(\cup \{TT\} \cup \{bTT\} \cup \{bbTT\} \subseteq Q \) for all \(a \in T \setminus Q \).

Then \(Q \subseteq QU(a) \). Since \(QU(a) \) is an ordered quasi-ternary \(\Gamma \)-ideal of \(T \) and \(Q \) is maximal, we have \(QU(a) = T \). Hence, \(T \setminus Q \subseteq QU(a) \).

Lemma IV.4: Let \(T \) be an ordered ternary \(\Gamma \)-semiring without a zero element. Then \(T = U \) if and only if \(QU(a) \neq T \) for all \(a \in T \).

Proof: Assume that \(T = U \) and let \(a \in T \). Then \(a \in U \), so \(a \in Q \). However, \(a \in Q \) and \(Q \subseteq T \). Conversely, assume that \(Q(a) \neq T \) for all \(a \in T \). Then \(Q(a) \subseteq U \) for all \(a \in T \), so \(a \in U \) for all \(a \in T \). Hence, \(T = U \).

Theorem IV.5: Let \(T \) be an ordered ternary \(\Gamma \)-semiring without a zero element. Then one and only one of the following four conditions is satisfied:

1. \(U \) is not an ordered quasi-ternary \(\Gamma \)-ideal of \(T \).
2. \(Q(a) \neq T \) for all \(a \in T \).
3. There exists \(a \in T \) such that \(Q(a) = T \), \(a \in T \), \(a \notin Q \), and \(QU(a) \) is not quasi-simple, \(T \setminus a = \{x \in T \mid Q(x) = T\} \) and \(U \) is the unique maximal ordered quasi-ternary \(\Gamma \)-ideal of \(T \).
4. \(T \setminus U \subseteq QU(a) \) for all \(a \in T \setminus U \) and \(Q \) is not quasi-simple, \(T \setminus U \subseteq \{x \in T \mid Q(x) = T\} \) and \(U \) is the unique maximal ordered quasi-ternary \(\Gamma \)-ideal of \(T \).
Proof: Assume that U is an ordered quasi-ternary $Γ$-ideal of T. We consider the following two cases:

Case 1: $U = T$. By Lemma 4.4, the condition (2) holds.

Case 2: $U \neq T$. Then T is not quasi-simple. We claim that U is the unique maximal ordered quasi-ternary $Γ$-ideal of T. Let Q be an ordered quasi-ternary $Γ$-ideal of T such that $U \subseteq Q$.

If $Q \neq T$, then $Q \subseteq U$. That is a contradiction. Thus $Q = T$, so U is a maximal ordered quasi-ternary $Γ$-ideal of T. Next, assume that A is a maximal ordered quasi-ternary $Γ$-ideal of T. Then $A \neq T$, so $A \subseteq U \subseteq T$. Since A is maximal, we have $A = U$. Therefore, U is the unique maximal ordered quasi-ternary $Γ$-ideal of T. Since $U \neq T$, we have $Q(a) = T$ for all $a \in T \setminus U$ and $Q(a) \neq T$ for all $a \in U$. Thus $T \setminus U = \{x \in T \mid Q(x) = T\}$ so $U \subseteq Q(x) = T$ is an ordered quasi-ternary $Γ$-ideal of T for all $x \in T \setminus U$. By Theorem 4.3, we have the following two cases:

(i) $T \setminus U \subseteq \{a \setminus \} and $α(β)\setminus \{\alpha\setminus \}$ for some $a \in T \setminus U$, and $(TTT\alpha\setminus \{\alpha\setminus \})\cap(\alpha\setminus \}) \subseteq \{\alpha\setminus \}$ for all $\beta \in T \setminus U$ or

(ii) $T \setminus U \subseteq \{a \setminus \} for all $a \in T \setminus U$.

Assume (i) holds. Then $T = Q(a) = \{a\setminus \}(TTT\alpha\setminus \{\alpha\setminus \})\cap(\alpha\setminus \}) \subseteq \{\alpha\setminus \}$. Thus $U \subseteq T$. That is a contradiction.

Hence, $\{a \setminus \}(TTT\alpha\setminus \{\alpha\setminus \})\cap(\alpha\setminus \}) \subseteq U$, so the condition (3) holds.

Assume (ii) holds. Then the condition (4) holds.

Note IV.6: For an ordered ternary $Γ$-semiring T with a zero element, the union of all nonzero proper ordered quasi-ternary $Γ$-ideals of T is denoted by U_0.

Lemma IV.7: Let T be an ordered ternary $Γ$-semiring with a zero element. Then $T = U_0$ if and only if $Q(a) \neq T$ for all $a \in T$.

Proof: The proof is almost similar to the proof of Lemma IV.4.

Theorem IV.8: Let T be an ordered ternary $Γ$-semiring with a zero element. Then one and only one of the following four conditions is satisfied:

1. U_0 is not an ordered quasi-ternary $Γ$-ideal of T.
2. $Q(a) \neq T$ for all $a \in T$.
3. There exists $a \in T$ such that $Q(a) = T$.
4. $T \setminus U_0 \subseteq Q(a)$ for all $a \in T \setminus U_0$. T is not 0-quasi-simple, $T \setminus U_0 = \{x \in T \mid Q(x) = T\}$, and U_0 is the unique maximal ordered quasi-ternary $Γ$-ideal of T.

Proof: The proof is almost similar to the proof of Theorem IV.5.

References

[23] Sajani Lavanya, Madhusudhana Rao and Syam Julius Rajendra., on Quasi-Ternary Γ-Ideals and Bi-Ternary Γ-Ideals in Ternary Γ-Semirings accepted for publication in International Journal of Mathematics and Statistics Invention in the month October 2015.

